Contributes to Radiosensitivity A Double-Strand Break Repair Defect in ATM-Deficient Cells

نویسندگان

  • Martin Kühne
  • Enriqueta Riballo
  • Nicole Rief
  • Kai Rothkamm
  • Penny A. Jeggo
  • Markus Löbrich
چکیده

The ATM protein, which is mutated in individuals with ataxia telangiectasia (AT), is central to cell cycle checkpoint responses initiated by DNA double-strand breaks (DSBs). ATM’s role in DSB repair is currently unclear as is the basis underlying the radiosensitivity of AT cells. We applied immunofluorescence detection of -H2AX nuclear foci and pulsed-field gel electrophoresis to quantify the repair of DSBs after X-ray doses between 0.02 and 80 Gy in confluence-arrested primary human fibroblasts from normal individuals and patients with mutations in ATM and DNA ligase IV, a core component of the nonhomologous end-joining (NHEJ) repair pathway. Cells with hypomorphic mutations in DNA ligase IV exhibit a substantial repair defect up to 24 h after treatment but continue to repair for several days and finally reach a level of unrepaired DSBs similar to that of wild-type cells. Additionally, the repair defect in NHEJ mutants is dose dependent. ATM-deficient cells, in contrast, repair the majority of DSBs with normal kinetics but fail to repair a subset of breaks, irrespective of the initial number of lesions induced. Significantly, after biologically relevant radiation doses and/or long repair times, the repair defect in AT cells is more pronounced than that of NHEJ mutants and correlates with radiosensitivity. NHEJ-defective cells analyzed for survival following delayed plating after irradiation show substantial recovery while AT cells fail to show any recovery. These data argue that the DSB repair defect underlies a significant component of the radiosensitivity of AT cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity.

The ATM protein, which is mutated in individuals with ataxia telangiectasia (AT), is central to cell cycle checkpoint responses initiated by DNA double-strand breaks (DSBs). ATM's role in DSB repair is currently unclear as is the basis underlying the radiosensitivity of AT cells. We applied immunofluorescence detection of gamma-H2AX nuclear foci and pulsed-field gel electrophoresis to quantify ...

متن کامل

The controlling role of ATM in homologous recombinational repair of DNA damage.

The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along wi...

متن کامل

Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase

Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resec...

متن کامل

ATM Influences the Efficiency of TCRβ Rearrangement, Subsequent TCRβ-Dependent T Cell Development, and Generation of the Pre-Selection TCRβ CDR3 Repertoire

Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generat...

متن کامل

Analysis of the genetic interactions between Cyclin A1, Atm and p53 during spermatogenesis.

AIM To analyze the functional interactions of Cyclin with p53 and Atm in spermatogenesis and DNA double-strand break repair. METHODS Two lines of double knockout mice were generated. Spermatogenesis and double strand break repair mechanisms were analyzed in Cyclin A1 (Ccna1); p53- and Ccna1; Atm-double knockout mice. RESULTS The block in spermatogenesis observed in Cyclin A1-/- (Ccna1-/-) t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004